Q.P. Code: 19HS0850

Reg. No:					

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

B.Tech I Year I Semester Regular Examinations January 2020 ADVANCED PHYSICS

	ADVANCED PHYSICS				
	(Mechanical Engineering)				
Time:	3 hours Max. Marks: 60				
	(Answer all Five Units $5 \times 12 = 60$ Marks)				
	UNIT-I				
1	a Describe the formation of Newton's ring with necessary theory.	7M			
	b Explain how the wavelength of light sources is determined by forming Newton's rings.	5M			
	OR				
2	What is diffraction grating how it is constructed?				
	b A plane grating having 10520 lines per cm is illuminated with light having a wave	4M			
	length of 5×10^{-5} cm at normal incidence, then how many orders are visible in the				
	grating spectra?				
	UNIT-II				
3	a What is the importance of acoustics in engineering?	6 M			
	b How we optimize the reverberation time in the music halls?	6M			
	OR				
4	a Write the properties of Ultrasonic waves.	6M			
	b Explain the detection methods of Ultrasonic waves.	6M			
	<u>UNIT-III</u>				
5	a Define i) magnetic moment and ii) magnetic susceptibility.	4M			
	b Explain the origin of magnetic moments.	8M			
_	OR				
6	a Derive the expression for electronic polarizability in dielectrics.	8M			
	b The dielectric constant of He gas at NTP is 1.0000684. Calculate the electronic	4M			
	polarizability of He atoms if the gas contains 2.7×10^{25} atoms per m ³ .				
	UNIT-IV				
7	a Explain the construction and working of Nd:YAG laser with suitable energy level	8M			
	diagram.				
	b What are the advantages of Nd:YAG laser?	4M			
	OR	03.5			
8	a What is the acceptance angle of an optical fibre and derive an expression for it.	8M			
	b An optical fibre has a core refractive index of 1.44 and cladding refractive of 1.40.	4M			
	Find its acceptance angle and numerical aperture.				
_	UNIT-V				
9	a Explain why surface to volume ratio very large for nano materials?	8M			
	b What is Quantum Confinement?	4M			
10	OR	03.4			
10	a How we synthesis nanomaterial by Sol-Gel technique?	8M			
	b Write advantages of sol-gel process.	4M			

*** END ***